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Summary 

Emerson gave recurrence formulae for the calculation of orthonormal polynomials 

for univariate discrete random variables. He claimed that as these were based on 

the Christoffel-Darboux recurrence relation they were more efficient than those 

based on the Gram-Schmidt method. This approach was generalised by Rayner 

and colleagues to arbitrary univariate random variables. The only constraint was 

that the expectations needed are well-defined. Here the approach is extended to 

arbitrary bivariate random variables for which the expectations needed are well-

defined. The extension to multivariate random variables is clear. 
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1. Introduction 

 

Bivariate random variables (X, Y) have orthonormal polynomials {hr,s(x, y)} if and 

only if 

 

E{hr,s(X, Y) hu,v(X, Y)} = 0 for (r, s) ≠ (u, v) and  

 = 1 for (r, s) = (u, v). 

 

Here E denotes expectation with respect to the distribution of (X, Y) and it is assumed that the 

expectations concerned exist. The couple (r, s) uniquely identifies every polynomial in 

{hr,s(x, y)}, although there are different conventions for doing so. Subsequently it is assumed 

that h0,0(x, y) = 1 for all x and y. 

 

Example 1. Independent random variables. Suppose that X and Y are independent random 

variables, that {pr(x)} is a set of orthonormal functions on the distribution of X, and that 

{qs(y)} is a set of orthonormal functions on the distribution of Y. It follows that hr,s(x, y) = 

pr(x) × qs(y) defines a set of orthonormal functions on the product distribution of X and Y. For 

E[{pr(X)qs(Y)}{pu(X)qv(Y)}] = E{pr(X)pu(X)} E{qs(Y)qv(Y)} = 1 for (r, s) = (u, v) and zero 

otherwise. If pr(x) and qs(y) are polynomials then the bivariate polynomials of degree n are 

pn(x) × q0(y), pn–1(x) × q1(y), …, p0(x) × qn(y). 
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Example 2. Bivariate normal random variables. Suppose (X, Y) is bivariate normal with 

means µX, µY, variances  and , and correlation ρ. The standardised variables have 

covariance matrix  

 

Σ  =  for which Σ–0.5 = . 

 

Now if Z = (Z1, Z2)T = Σ–0.5 ((X –  µX)/σX, (Y –  µY)/σY)T then Z1 are Z2 are independent 

standard normal random variables. The orthonormal polynomials for the standard normal are 

the Hermite polynomials. The set of orthonormal polynomials for Z is, by the preceding 

example, the product set of Hermite polynomials. In terms of the original (X, Y) variables this 

set defines a set of orthonormal polynomials for the correlated bivariate normal. Both this 

example and the previous one generalise readily to the multivariate case. The resulting set of 

orthonormal polynomials is no less compact than that described by Withers (2000). 

 

Subsequently we use a different indexing convention from that used in the first two 

examples. A bivariate polynomial of degree n is of the form  with i, j = 0, 1, 2, ... 

, i + j < n, and with ai, n–i > 0 for at least one i. Note that a homogeneous bivariate polynomial 

of degree n includes only those terms with i + j = n. Any bivariate polynomial of degree n 

could be considered to be a sum of homogeneous bivariate polynomials of degree 0, 1, ..., n. 

We say hn,s(x, y) is the sth bivariate orthonormal polynomial of degree n with n = 0, 1, 2, ... 

and s = 0, 1, ... , n if hn,s(x, y) is both a bivariate polynomial of degree n and {hn,s(x, y)} is 

orthonormal. Thus n indicates the degree and s is a unique counting index.  

In section 2 we give recurrence formulae for the construction of orthonormal 

polynomials for bivariate distributions. At the nth step a basis of bivariate polynomials is 
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constructed and then a linear transformation produces the orthonormal polynomials of degree 

n. These degree n orthonormal polynomials are not unique. 

In section 3 the use of the bivariate orthonormal polynomials to construct smooth tests 

of goodness of fit is discussed. Emphasis is given to testing for copulas. The conclusion in 

section 4 focuses mainly on categorical data analysis. 

At http://www.biomath.ugent.be/~othas/recurrence/ R code that implements the 

recurrence relations is given for three distributions. The first is essentially Example 3. The 

distributions on the second example are related to 3 × 3 and 4 × 4 contingency tables, and the 

final example produces orthonormal polynomials for a copula; see Section 3.2. The interested 

reader is invited to modify the code for examples of their choice. The code verifies that the 

functions are both orthogonal and normalised, and writes the orthonormal functions to R 

functions. 

 

 

2. Bivariate recurrence formulae 

 

Subsequently we will need vectors dr containing functions of degree r in the variables 

x and y, then move to vectors ur that contain the corresponding orthogonal polynomials, then 

vectors hr that contain the corresponding orthonormal polynomials. The initial choices are 

sensible but just one set of possibilities; similarly the outcomes are not necessarily unique. 

First, given our definition of h0,0(x, y), we take d0 = u0 = h0 = 1. 

Henceforth dr will contain degree r terms in x and y in a manner to be defined shortly. 

We take d1 = (x, y)T and construct the degree one orthonormal polynomials. Incidentally, 

since ur contains the orthogonal polynomials of degree r and hr contains the orthonormal 
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polynomials of degree r, dr, ur and hr are all (r + 1) × 1 vectors. Also we write Mr = cov(ur), 

which is (r + 1) × (r + 1). 

It will not be assumed that the random variables X and Y are standardised. We take u1 

= d1 – E(d1), M1 = cov(u1) and h1 =  u1. Clearly h1 is orthogonal to h0 since E(h1) = 0 

and cov(h1) = I2, the 2 × 2 identity matrix. 

If L is any orthogonal matrix the elements of Lh1 are also degree one polynomials 

orthogonal to h0,0 since E(Lh1) = LE(h1) = 0 and mutually orthonormal since cov(Lh1) = I2. 

So the orthonormal polynomials of degree zero and one are not unique, and uniqueness 

cannot be expected for the orthonormal polynomials of any degree. This is consistent with the 

bivariate normal, since our orthogonal polynomials are different from those given by Withers 

(2000). However the elements of h1 are, in a sense, symmetric, and this symmetry of form is 

sensible. 

We now construct the order two polynomials. Define d2 = (x × (h1)1, x × (h1)2, y × 

(h1)2)T and u2 = {d2 – E(d2)} + A1h1. For u2 to be orthogonal to h0 requires 0 = E(u2), which 

is obviously true since E[{d2 – E(d2)}] = 0 and E(h1) = 0. Orthogonality to h1 requires 

 

0 = cov(u2, h1) = cov(d2, h1) + A1, so that A1 = – cov(d2, h1). 

 

Hence  

 

u2 = d2 – E(d2) – cov(d2, h1)h1. 

 

Now routine calculations show that M2 = var(d2) – cov(d2, h1) cov(h1, d2) so h2 = u2 is 

fully specified. 
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At the nth step we have constructed h0, h1, …, hn–1 mutually orthonormal and define 

both dn = (x × (hn–1)1, x × (hn–1)2, …, x × (hn–1)n, y × (hn–1)n)T and un = {dn – E(dn)} + An–1hn–1 + 

… + A1h1. The term {dn – E(dn)} gives a vector of polynomials of degree n while the 

remaining terms allow us to complete the construction so that un is orthogonal to all previous 

orthonormal polynomials. By an argument parallel to that in Rayner et al. (2008), in un it is 

sufficient to include only terms involving hn–1 and hn–2. For  

 

0 = cov(un, hj) = cov(un, dn) + Aj for j < n – 3 

 

and to evaluate cov(un, hj) we need to evaluate terms like E{X × (hn–1)r × (hj)s} = E{(hn–1)r × X 

× (hj)s}. For j < n – 3 X × (hj)s is expressible as a linear combination of elements of the basis 

vectors h0, h1, …, hn–2, which must be orthogonal to hn–1. Thus Aj = 0 and 

 

un = {dn – E(dn)} + An–1hn–1 + An–2hn–2. 

 

To evaluate the Aj note that orthogonality requires E(un) = 0, which again is clearly 

true, and, for j = n – 1 and n – 2 

 

0 = cov(un, hj) = cov(dn, hj) + Aj, so Aj = – cov(dn, hj) for j = n – 1 and n – 2. 

 

Hence  

 

un = dn – E(dn) – cov(dn, hn–1) hn–1 – cov(dn, hn–2) hn–2.                           (1) 

 

We could now calculate Mn = cov(un) numerically and put hn = un. 
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Example 3. Two independent standard normal random variables. From Examples 1 and 2 we 

know two sets of bivariate orthonormal polynomials independent of the recurrence developed 

above. We now apply the recurrence to this situation. 

If Z1 and Z2 are independent standard normal random variables put (Z1, Z2)T = d1 = u1 

= h1 and M1 = I2. Applying our construction, d2 = ( , Z1Z2, )T and E(d2) = (1, 0, 1)T. 

Now using the independence and that Z1 and Z2 have zero means and third moments, 

 

cov(d2, h1) =  =  = 0. 

 

Next, u2 = ( , Z1Z2, )T from which M2 = Σ 22 = var(d2) = diag(2, 1, 2). Hence 

 

h2 = ( , Z1Z2, )T = (g2(Z1), g1(Z1)g1(Z2), g2(Z2))T 

 

if we write gr(z) for the Hermite polynomial of order r. This is consistent with Example 1. 

At the next step we apply our construction again. This gives  

 

d3 = (Z1g2(Z1), Z1g1(Z1)g1(Z2), Z1g2(Z2), Z2g2(Z2))T. 

 

Since, for example, Z1g2(Z1) = , E{Z1g2(Z1)} = 0 and E(d3) = 0. We could also use 

arguments about odd and even functions, as the odd order Hermite polynomials are odd 

functions, and both the even odd order Hermite polynomials and the standard normal pdf are 
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even functions. We now require cov(d3, h2) and cov(d3, h1). First, using arguments about odd 

and even functions, cov(d3, h2) = 0. The details are omitted here. Next 

 

cov(d3, h1) =  

=  = 

 

 

since, for example, g2(z1) = , E{ g2(Z1)} =  =  and 

E{Z1g1(Z1)} =  = 1. It is routine to show that E(d3) = 0 so that  

 

u3 =  = . 

 

This uses the functional forms of g1(z), g2(z) and g3(z). Again it is routine to show that M3 = 

diag(3, 2, 2, 3) and h3 is as anticipated in Example 2. 

We now consider the order n polynomials. The construction puts 

 

hn = (z1gn–1(z1), z1gn–2(z1) g1(z2), z1gn–3(z1)g2(z2), …, z1gn–1(z2), z2gn–1(z2))T. 
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We have from previously that E(d1) = 0, E(d2) = (1, 0, 1)T and E(d3) = 0. Again using the 

independence and arguments about odd and even functions, all elements of E(dn) apart from 

the first and last are zero. From Rayner et al. (2008), quoting Abramowitz & Stegun (1970, 

Chapter 22), the unnormed Hermite polynomials {Her(x)} satisfy Her(x) = x Her–1(x) – (r – 1) 

Her–2(x) from which E{X Her–1(X)} = E{Her(X)} + (r – 1) E{Her–2(X)}. Only when r = 2 is 

E{X Her–1(X)} non-zero. It follows that E(dn) = 0 for n > 2. 

Yet again using the independence and arguments about odd and even functions, 

cov(dn, hn–1) = 0. Turning to cov(dn, hn–2), the first row contains elements  

 

cov(z1gn–1(z1), gn–2(z1)), cov(z1gn–1(z1), gn–3(z1) g1(z2)), … 

 

all of which, apart from the first element, are zero. Using a result from Rayner et al. (2008), 

this element is 

 

z1gn–1(z1) – E{Z1gn–1(Z1)gn–2(Z1)}gn–2(z1) = z1gn–1(z1) – (n – 1)0.5 gn–2(z1). 

 

Again from Rayner et al. (2008), quoting Abramowitz & Stegun (1970, Chapter 22), the 

recurrence relation for the unnormed Hermite polynomials when normed gives  

 

zgr–1(z) – (r – 1)0.5 gr–2(z) = r0.5 gr(z). 

 

Using this result the first element is n0.5 gr(z1). 

The second row contains elements  

 

cov{z1gn–2(z1) g1(z2), gn–2(z1)}, cov{z1gn–2(z1)g1(z2), gn–3(z1)g1(z2)}, … 
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all of which, apart from the second element, are zero. Using the previous approach, this 

element is 

 

z1gn–2(z1) g1(z2) – E{Z1gn–2(Z1)gn–3(Z1)}gn–3(z1)g1(z2)  

= {z1gn–2(z1) – (n – 2)0.5 gn–3(z1)} g1(z2) = (n – 2)0.5 gn–1(z1) g1(z2). 

 

Subsequent terms yield the results anticipated in Example 2. 

 

 

3. Application: smooth tests of goodness of fit for bivariate distributions 

 

3.1 Smooth tests for bivariate distributions 

Suppose that we have a random sample (X1, Y1), …, (Xn, Yn) from a bivariate 

distribution. We wish to test if the distribution of (X, Y) has pdf f(x, y; β), in which β is a 

vector of p nuisance parameters, such as the means, variances and covariances when testing 

for bivariate normality. The construction of the smooth tests starts by imbedding f(x, y; β) in a 

smooth alternative of order k (> p). Define Neyman alternatives of the form 

 

gk(x, y; θ, β) =  

 

in which {hi,j(x, y; β)} is a set of functions orthonormal on f(x, y; β) and C(θ, β) is a 

normalising constant and I is an index set containing k unique pairs (i, j) ≠ (0, 0). Here θ is a 

vector containing the k parameters θi,j. The θi,j are inserted into θ in some well-defined order, 

such as, if appropriate, lexicographic order. Similarly define Barton alternatives of the form 
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gk(x, y; θ, β) = . 

 

The merits of both forms, and more, are discussed in Rayner et al. (2009). Here we simply 

note that the Barton form does not require the existence of the normalising constant, but may 

not be a proper pdf. 

To test for f(x, y; β) the score test statistic for testing H: θ = 0 against K: θ ≠ 0 is 

derived. Put  

 

Vr,s = Vr,s(β) =  

 

and define V = (Vi,j) using the same pairs (i, j) ∈ I and ordering as for θ. The choice of θi,j in 

gk(x, y; θ, β) depends on the purposes of the analysis; see Example 4. Again using the same 

ordering, put 

 

Σ(β) = . 

 

Here the subscript 0 indicates the variance or covariance is evaluated under the null 

hypothesis θ = 0 and Ik is the k × k identity matrix. The same test statistic,  

 

Sk =  
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results when using either the Neyman or the Barton form. Here  is the maximum likelihood 

estimator of β under the null hypothesis; that is, when the true pdf is f(x, y; β). The 

asymptotic null distribution of Sk is , where the degrees of freedom are the number of 

components or (r, s) pairs minus the number of parameters estimated. 

In Rayner et al. (2009) the smooth tests have been used to test for a variety of 

distributions, such as the normal, Poisson, logistic and generalised Pareto distributions. Most 

distributions examined are univariate; only two multivariate distributions are assessed. One is 

the multivariate normal where the orthonormal polynomials are constructed by transforming 

to independent standard normals and using the product set of polynomials, as in Examples 1 

and 3. For the bivariate Poisson smooth tests were used, but not orthonormal polynomials. 

This approach leads to a better understanding and improvement of certain known tests in the 

literature.  

The orthonormal functions given in this paper mean we may now construct smooth 

tests for a large class of bivariate distributions not previously accessible. A particular class of 

such distributions is copulas, discussed in the next sub section. 

 

 

3.2 Copulas 

Copulas are a general class of multivariate distributions that are characterised by 

having uniform marginal distributions. All parameters of the copula are thus related to the 

bivariate moments. Because a uniform distribution can be transformed to any continuous 

distribution by applying the quantile function transformation, copulas may be used to model a 

very wide class of multivariate distributions in a very flexible manner. Among the many 

applications of copulas, we mention financial risk assessment, hydrology and survival 
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analysis; see, for example, Embrechts (2009), Genest & Favre (2007) and Salvadori & De 

Michele (2007). For an introduction to copulas see Nelson (2006).  

For a review of other types of goodness of fit tests for copulas see Berg (2009) and 

Genest (2009). 

 

Example 4. The Farlie-Gumbel-Mortgenstern (FGM) copula. Copulas are typically defined in 

terms of their cdf. The FGM copula has cdf 

 

F(x, y, β) = xy + βxy(1 – x)(1 – y) for (x, y) ∈ [0, 1]2 and β ∈ [–1, 1]. 

 

The score function is thus  

 

∂log f(x, y, β)/∂β = (1 – 2x)(1 – 2y)/{1 + β(1 – 2x)(1 – 2y)}. 

 

The test is performed as follows. 

1) The marginal empirical distribution function is used to transform the marginals to be 

uniformly distributed. The orthonormal polynomials are then calculated as described in 

section 2. 

2) Maximum likelihood is used to estimate the nuisance parameter β from the sample data, 

for example by using the copula package in R. The estimate is denoted by . 

3) The component statistics Vr,s( ) are computed for all (r, s) ∈ I. 

4) The variance estimate  is obtained from the copula package in R. 
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5) The covariance estimate  is numerically approximated based 

on a random sample of 1,000,000 data points from a FGM copula with nuisance 

parameter . 

6) The test statistic S is calculated, and the p-value obtained from a χ2 distribution. 

Now consider the data of Stone (1978) in Table 1. The data comes from an 

experiment with items subjected to a 55-voltage stress; two correlated failure times, (T1, T2) 

are recorded. Craiu & Bercia (2007) analysed the data and concluded that of the several 

copula distributions considered the FGM copula gave the best fit to the data. 

 

_____________________ 

TABLE 1 ABOUT HERE 

_____________________ 

 

Applying our algorithm, the parameter β is estimated by maximum likelihood to be 

0.8512. Using the nine (r, s) pairs with r and s = 1, 2, 3 gives a test statistic of 7.06. Using the 

asymptotic  distribution gives a p-value of 0.530. Thus at the 5% level the FGM copula is 

consistent with the data. 

Another smooth test is of interest. In many copula applications the fit to the marginal 

distributions is separated from the assessment of the dependence structure. Thus, for 

example, the dependence structure may be assessed by considering only those polynomials 

that have only terms in xiyj with i, j ≠ 0. This may be achieved by means of an appropriate 

orthonormal transformation of the original set of orthonormal polynomials. In the R-code 

available on our web site more details can be found about the QR-decomposition that we 

have used for this purpose. After the transformation only three polynomials are of the desired 
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form. The resulting test statistic takes the value 0.728 with asymptotic  p-value of 0.695. 

Again, at the 5% level, in regard to the dependence structure as assessed by these three 

components, the FGM copula is consistent with the data. 

These smooth tests confirm the descriptive findings of Craiu & Bercia (2007). 

 

 

4. Conclusion 

 

The polynomials generated from the recurrence formulae above expand the scope for 

further work in many areas; here we comment briefly on categorical data analysis. Previous 

work has largely focused on analysing the association between categorical variables, typically 

univariate orthonormal polynomials derived using the recurrence formulae of Emerson 

(1968). For example, the partition of the Pearson chi-squared statistic using univariate 

polynomials has been considered by Lancaster (1953), Rayner & Best (1996), Best & Rayner 

(1996), Beh & Davy (1998, 1999), Beh (2001) and Rayner & Beh (2009b). Partitions of other 

measures of association using the univariate polynomials derived from Emerson’s formulae 

include those of Lombardo, Beh & D’Ambra (2007), Beh et al. (2007). The graphical 

analysis of association between categorical variables has extensively used univariate 

polynomials. One may consider, for example, Beh (1997, 1998, 2008) and Lombardo et al. 

(2007), who focused on correspondence analysis.  

There is great potential for the bivariate polynomials constructed as in this paper to be 

applied in this same context. The advantage of considering their use in a categorical data 

analysis framework is that they can allow the researcher to delve deeper into the association 

structure of the variables of interest by identifying generalised correlations; see Rayner & 

Beh (2009a). By determining bivariate polynomials of order (r, s) one can identify 
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association structures that reflect the (r, s)th component. For example, if X and Y are defined 

as two categorical variables, the bivariate polynomial h12(X, Y), can be used to reflect the 

linear-by-quadratic association structure between X and Y. This certainly has potential when 

performing ordinal correspondence analysis (Beh, 1997) which will allow for a graphical 

perspective of such a structure.  

The benefit of implementing the bivariate polynomials in a categorical data analysis 

framework is that they will allow the researcher to investigate a variety of complex 

association structures that exist between multiple categorical variables. For example, the 

univariate polynomials have been shown to be of value in the partition of the Goodman-

Kruskal tau (GK-tau) index (Goodman & Kruskal, 1954) and the Marcotorchino index, a 

three-way analogue of GK-tau; see Marcotorchino (1985). The components of such partitions 

are akin to the generalised correlation already alluded to. However, where the univariate 

polynomials are unable to take into consideration the association structure required for 

calculating the Gray-Williams index (Gray & Williams, 1975), say, the bivariate polynomials 

will allow for such calculations to be made. 
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TABLE 1 

Stone’s correlated failure time data 

T1 228 106 246 700 473 155 414 1374 128 

T2 30 8 66 72 25 7 30 90 4 

T1 1227 254 435 1155 195 117 724 300  

T2 39 46 85 85 27 27 21 96  

 

 


